
I R E A S O N I N G S N M P L I B R A R Y

iReasoning SNMP API User Guide

Copyright © 2002-2016 iDeskCentric Inc., All Rights Reserved.

The information contained herein is the property of iDeskCentric Inc. This document may not be copied, reproduced, reduced

to any electronic medium or machine readable form, or otherwise duplicated, and the information herein may not be used,

disseminated or otherwise disclosed, except with the prior written consent of iDeskCentric Inc.

I R E A S O N I N G S N M P L I B R A R Y

Table of Contents
INTRODUCTION .. 1
About this document .. 1
Target Audience ... 1
INSTALLATION ... 2
Requirements .. 2
Installation Procedures .. 2
USING iREASONING SNMP LIBRARY .. 4
Overview and Architecture .. 4
UML diagram .. 7
Configuration ... 8

Logger configuration .. 8
Usage examples .. 8

SnmpSession class ... 8
Synchronous SNMP Operations .. 9
Asynchronous SNMP Operations .. 10
SNMP Table Retrieval .. 11
SnmpTrapdSession class .. 12
SnmpTrapSender class ... 13
SnmpPoller class ... 13
Java Applet Example .. 14

FAQ .. 15
RESOURCES AND REFERENCE .. 19
GLOSSARY OF TERMS ... 20

I R E A S O N I N G S N M P L I B R A R Y

INTRODUCTION

About this document
he purpose of this document is to provide the reader with enough knowledge to
start developing software using the iReasoning's SNMP toolkit. Some examples are
provided to better illustrate the usage of APIs. This document is not intended to
provide detailed information about the SNMP APIs. To effectively use the APIs,

readers need to refer to javadoc help that has detailed instructions and examples.

The iReasoning SNMP API is a Java toolset that greatly simplifies the development of applications for
managing SNMP agents. It provides full support for SNMPv1, SNMPv2c and SNMPv3. The design and
implementation of this library were based on object-oriented methodology and followed recognized
design patterns. These advantages, combined with a highly optimized code base, make iReasoning
SNMP library stand out from the competition.

Target Audience
This document is intended for users and engineers who are responsible for developing SNMP based
management applications. A user of this software does not have to be an expert in network management
field. He or she should, however, be familiar with basic SNMP concepts, such as SNMP GET and
GET_NEXT operations. Some basic knowledge about Java language is required to understand
examples. This software is designed to minimize the learning curve for users and achieve a given
programming job with less code. A new user should therefore find it quite easy to learn and master this
product.

T

Chapter

1

I R E A S O N I N G S N M P L I B R A R Y

INSTALLATION

Requirements
Ø JDK1.2 or a later version must be installed. You can download JDK from

the Oracle’s web site (http://java.com)

Ø At least 32MB memory is required

Installation Procedures
Ø Download and unzip

Download iReasoning SNMP library and unzip it to the desired directory,
for example, C:\lib\iReasoning\snmp

The directory structure will look like this:

Directory Name Description

lib contains binary jar files

javadoc contains javadoc HTML files

examples contains examples source code

config configuration files

Chapter

2

I R E A S O N I N G S N M P L I B R A R Y

Ø Set up CLASSPATH

 ireasoningsnmp.jar needs to be added to CLASSPATH environment
 variable. On Windows:

If the iReasoning SNMP library is installed at C:\lib\iReasoning\snmp,
use the command

set CLASSPATH=C:\lib\iReasoning\snmp\lib\ireasoningsnmp.jar;%CLASSPATH%

On Unix/Linux:

If iReasoning SNMP is installed at /usr/local/ireasoning/snmp, use the
command

CLASSPATH=/usr/local/ireasoning/snmp/lib/ireasoningsnmp.jar ; export CLASSPATH

Ø Run example program (Optional)

Example code is located at examples/snmp directory. They were pre-
compiled and jarred into lib/examples.jar. To verify that everything is
working, you can follow the following steps to run the example programs.

 1) Add examples.jar to CLASSPATH. Take similar step, for instance,
 On Windows:

 set CLASSPATH=C:\lib\iReasoning\snmp\lib\examples.jar;%CLASSPATH%

 (assuming examples.jar is located at C:\lib\iReasoning\snmp\lib\)

 On Unix/Linux

CLASSPATH /usr/local/ireasoning/snmp/lib/examples.jar ; export CLASSPATH

(assuming examples.jar is located at /usr/local/ireasoning/snmp/lib/)

 2) Run

 java snmpgetnext hostname .1.3

 (Retrieve the first SNMP variable)

where hostname is the host name or IP address of an snmp agent.

If you do not have an snmp agent, you can run snmpd.exe (on
Windows) to start an agent listening on port 161.

 Or you can use runexample.bat script to run examples on Windows.

I R E A S O N I N G S N M P L I B R A R Y

USING iREASONING
SNMP LIBRARY

Overview and Architecture
The iReasoning SNMP library is designed and implemented using object oriented
methodology and recognized design patterns. One of its design goals was to
minimize the learning curve of SNMP library for developers. Users only need to
know a few classes, most of complex works are hidden from them.

All versions of SNMP (SNMPv1, SNMPv2c and SNMPv3) are supported in one
library, and users do not have to learn the detailed underlying differences between
three SNMP versions. Users can always use a unified interface to access SNMP
agents speaking different SNMP protocols. The example code shipped with this
product clearly demonstrates the simplicity of this library. In those code, at first
glance, users will realize how simple it is to write code to communicate with SNMP
agents.

The central class is the SnmpSession. It provides all the necessary mechanism to
use SNMP operations. A session represents a communication channel between an
SNMP manager and an agent. To communicate with multiple agents, multiple
sessions have to be created. Each session is corresponding to each communication
channel. A session needs to be created and then a connection needs to be
established with the agent. After session is initialized, you are ready to issue SNMP
commands against the agent. There are four basic SNMP operations: GET,
GET_NEXT, SET, GET_BULK (SNMPv2c and SNMPv3). They are
represented in SnmpSession class as snmpGetRequest, snmpGetNextRequest,
snmpSetRequest, snmpGetBulkRequest methods. High-level SNMP operations,
such as GET_TABLE and WALK, are represented as snmpGetTable and
snmpWalk methods. When a session is no longer needed, it needs to be closed to
avoid resource leak.

SnmpTrapdSession class is provided for creating trap receiver programs. A trapd
session can be created and then waits for traps sent by agents. This session is able
to understand all the SNMPv1, SNMPv2c and SNMPv3 traps.

Chapter

3

I R E A S O N I N G S N M P L I B R A R Y

Both synchronous and asynchronous requests are supported in SnmpSession.
When sending synchronous requests, the session can only send one request at a
time. It must block and wait for the reply to the request before issuing next one.
This mode is easier to understand and implement. When using asynchronous
requests, the session does not need to wait for each reply. In this case, a session has
a thread handling the replies and notifying callers when replies arrive.

SNMP data types are represented as child classes of SnmpDataType class. The
remote agent is represented as the SnmpTarget class. Each agent is represented by
a single SnmpTarget object. An SnmpTarget can be instantiated with the IP
address (or host name) and port number of the remote agent. Other properties
of agent, such as community name, can also be specified. The class diagram is
shown in figure 1. For detailed information about classes, you can refer to the
javadoc files shipped with this library.

The SNMP protocol uses UDP as the default transport layer protocol. UDP is
connectionless and the delivery of packets is not guaranteed, but it is an efficient
way to transport small amount of data. The iReasoning SNMP API architecture
also supports TCP besides UDP. SNMP over TCP is a good fit for transferring
large amount of data. The built-in features of TCP, such as flow control and
efficient segmentation, make TCP perform better than UDP in this case. The agent
has to be able to support SNMP over TCP so that the SNMP manager can choose
TCP as an underlying transport layer protocol.

I R E A S O N I N G S N M P L I B R A R Y

A MIB parser utility is also included in the library. MibUtil class can be used to
parse MIBs and resolve OID and variable binding’s value. It can look up MIB
node name from OID value as well. MibUtil’s parseMib method can parse MIB
and return a tree data structure. Here is an output from mibparser.java sample
code, which illustrates how to use MIB parser.

I R E A S O N I N G S N M P L I B R A R Y

UML diagram

SnmpInt

+getType() : int
+getTypeString() : String
+copy() : SnmpDataType

<<interface>>
SnmpDataType

SnmpUInt

SnmpCounter32

SnmpCounter64 SnmpOctetStringSnmpOID SnmpNull

SnmpTimeTicksSnmpGauge32 SnmpIpAddress SnmpOpaque

SnmpVarBind

+send(in pdu : SnmpPdu) : SnmpPdu
+snmpGet(in oid : SnmpOID) : SnmpPdu
+snmpGetNext(in oid : SnmpOID) : SnmpPdu
+snmpGetBulk(in pdus : SnmpOID[], in nonRepeaters : int, in maxRepetitions : int) : SnmpPdu
+snmpSet()

-snmpTarget : SnmpTarget
SnmpSession

SnmpPdu

1

*

**

-community : String
SnmpTarget

1 1

1 1

1

1

+waitForTrap() : SnmpDataType

SnmpTrapdSession

+getState() : int
#open(in target : Trarget)
+close()

-target : Trarget
Session

-host : String
-port : int

Trarget

1 1

 Figure 1. iReasoning SNMP library class diagram

I R E A S O N I N G S N M P L I B R A R Y

Configuration
Config files are located at ./config directory by default. You can add a java
environment variable to set a new config directory. For example:

java -Dcom.ireasoning.configDir=d:\config …

In this example “d:\config” is the new config directory.

 Logger configuration

The iReasoning SNMP library has a built-in logger. The logger is configurable
through the Logger.prop file located at ./config directory. You can change the
logging level or just disable the logger. The output of logging message is also
configurable. It can be system’s standard out or file. Check out Logger.prop
for detailed information.

The popular open source log4j package is also supported. To switch to log4j
logger, you just need to add one line of code in the beginning of your
program:

 com.ireasoning.util.Logger.setUseLog4j(true);

If using log4j, the Logger.prop will no longer be used. You need to configure
the log4j logger or provide a config file for it. You can still use the log
methods in the Logger class to log messages, then they will be delegated to
corresponding methods in log4j logger.

Usage examples
In your source file, you need to import the following iReasoning SNMP
packages:

 SnmpSession class

The core class of iReasoning SNMP library is SnmpSession class. It represents
a communication channel between an SNMP manager and an agent. Similar to
other communication classes, it needs remote host name and port number so it
can connect to the remote agent, and the channel needs to be closed after it is
finished. This class provides necessary methods to do SNMP queries, such as
SNMP GetRequest, GetNextRequest, SetRequest, InformRequest, GetTable,
and Walk. The lowest level method is "public SnmpPdu send(SnmpPdu pdu)",
which encodes and sends out SnmpPdu object to the agent. The request

import com.ireasoning.protocol.*;
import com.ireasoning.protocol.snmp.*;

I R E A S O N I N G S N M P L I B R A R Y

methods, such as snmpGetRequest, snmpGetNextRequest etc., use
“send(SnmpPdu pdu)” method internally to do the job. So if in some cases you
find the higher-level methods cannot meet your needs, you can use send
method directly. The snmpget.java and snmpgetnext.java demonstrate how to
use that method. But in most cases, it is recommended to use higher-level
methods to reduce the chance of programming mistakes.

 Synchronous SNMP Operations

SNMP manager application sends out a synchronous SNMP request to an
agent and blocks until response comes back. Usually, synchronous operations
are easier to program than asynchronous operations.

Synchronous operations in SnmpSession class include snmpGetRequest,
snmpGetNextRequest, snmpGetBulkRequest, and snmpGetTable, etc.

The following is a simple example on how to use SnmpSession class to do
synchronous SNMP GetRequest.

In this example, it creates an SnmpTarget object that represents a remote
agent. An SnmpSession object is created next with the SnmpTarget object. If
remote agent only supports SNMPv3, additional information has to be
provided. Then we call snmpGetRequest method of SnmpSession class to send
out the request to the agent. Check out snmpget.java, snmpgetnext.java,
snmpgetbulk.java, snmpwalk.java, and snmpgettable.java (in
./examples/snmp/) for complete implementation examples.

SnmpSession.snmpGetRequest and other methods also take MIB node name
besides numerical OID. However you need to call loadMib method
beforehand to load corresponding MIB files first, then SnmpSession can
translate name into numerical OID.

 1. SnmpTarget target = new SnmpTarget(host, port,
readCommunity,
 2. writeCommunity, version);
 3. SnmpSession session = new SnmpSession(target);
 4. if(isSnmpV3)
 5. {
 6. session.setV3Params(user, authProtocol,
 7. authPassword, privPassword);
 8. }
 9.
 10. SnmpPdu retPdu = session.snmpGetRequest(oids); //send out get request
 11.
 12. System.out.println(retPdu);
 13. session.close();

I R E A S O N I N G S N M P L I B R A R Y

 Asynchronous SNMP Operations

SnmpSession class provides several asynchronous SNMP operation methods,
such as asyncSnmpGetRequest, and asyncSnmpGetNextRequest, etc. Compared with
synchronous SNMP operations, asynchronous SNMP operations can send out
more SNMP requests in the same amount of time because SnmpSession is not
blocked waiting for responses. To receive responses, we need a class
implementing Listener interface, therefore “handleMsg(Object session, Msg msg)”
method will be called when a response is received.

The following is a simple example on how to use SnmpSession class to do
asynchronous SNMP GetRequest.

In this example, it creates an SnmpTarget object that represents a remote
agent. An SnmpSession object is created next with the SnmpTarget object. If
remote agent only supports SNMPv3, additional information has to be
provided. A listener needs to be registered with this session, so when this
session receives a response, listener’s handleMsg method will be invoked. Then
we call asyncSnmpGetRequest method of SnmpSession class to send out the
request to the agent. It returns immediately after PDU is sent, unlike
synchronous methods that block until response comes back. Check out
snmpasyncget.java (in ./examples/snmp/) for complete implementation
examples.

 1. SnmpTarget target = new SnmpTarget(host, port,
readCommunity,
 2. writeCommunity, version);
 3. SnmpSession session = new SnmpSession(target);
 4. if(isSnmpV3)
 5. {
 6. session.setV3Params(user, authProtocol,
 7. authPassword, privPassword);
 8. }
 9. session.addListener(this);

10. session.asyncSnmpGetRequest(oids);
11. ...
12. //In a class implementing Listener interface
13. public void handleMsg(Object session, Msg msg)
14. { // received a pdu
15. SnmpPdu pdu = (SnmpPdu) msg;
16. print(pdu);
17. }

I R E A S O N I N G S N M P L I B R A R Y

 SNMP Table Retrieval
SnmpSession class provides a useful method to retrieve a whole MIB table.

In this example, MIB-II is loaded by calling loadMib2 method. Then we can use
snmpGetTable method with MIB node name “ifTable” to retrieve whole table.
Table information is stored in SnmpTableModel object. SnmpTableModel
implements Swing’s TreeModel interface, so it can be easily used to create a
JTable component. The following is a screenshot of tcpConnTable retrieval
(result of running snmpgettable.java example that is bundled with this product).

SnmpSession also provides snmpGetTableColumn method to retrieve a specific
column of a table.

1. SnmpSession session = new SnmpSession(host, port, community,
2. community, version);
3. if(isSnmpV3)
4. {
5. session.setV3Params(user, authProtocol, authPassword,
6. privPassword);
7. }
8. SnmpSession.loadMib2();//load MIB-II
9. SnmpTableModel table = session.snmpGetTable(“ifTable”);
10. for (int i = 0; i < table.getRowCount() ; i++)
11. {
12. print(table.getRow(i));
13. }

I R E A S O N I N G S N M P L I B R A R Y

 SnmpTrapdSession class

SNMP traps are initiated by agent or manager signaling changes or alarms
occurred. This class is a daemon session that can be easily used to create SNMP
trap receiver. Trap version contained in the UDP packet can be automatically
figured out, so it can understand all types of trap.

The following is a simple example on how to use SnmpTrapdSession class to
create a trap receiver.

The first line of code creates an SnmpTrapdSession listening on a certain port
number. Additional information is needed if it expects SNMPv3 traps. Line 9
registers for trap event, so handleMsg will be called when a trap arrives. Line 11
blocks and waits for traps. Line 13-16 is a callback method that prints out
received traps. Check out snmptrapd.java for a complete implementation.

 1. SnmpTrapdSession session = new SnmpTrapdSession(port);
 2. if(isSnmpV3)
 3. {
 4. session.addV3Params(user, authProtocol, authPassword,
 5. privPassword, trapSenderEngineID);
6.
7. }
8. //register with session, so handleMsg will be called when trap comes
9. session.addListener(this);
10. //blocks and wait for trap
11. session.waitForTrap();
12. ...
13. public void handleMsg(Object msgSender, Msg msg)
14. {
15. System.out.println((SnmpDataType)msg);
16. }

I R E A S O N I N G S N M P L I B R A R Y

 SnmpTrapSender class

This class can be used to send out all three versions of SNMP traps. Although
SnmpSession class also can be used to send out trap if properly configured, it is
much easier to do it using this class instead.

Here is a simple example demonstrating sending out SNMPv1 traps.

Line 1 creates an SnmpTrapSender class. Line 2 to 4 form an SnmpTrap
object. Line 5 sends out the trap to the destination. Check out snmptrap.java
for a complete implementation.

 SnmpPoller class

This class can send out SNMP GetRequest and GetNextRequest to agents
periodically. The interval is configurable.

Here is a simple example demonstrating using SnmpPoller class.

1. SnmpTrapSender trapSender = new SnmpTrapSender();
2. SnmpV1Trap trap = new SnmpV1Trap(enterprise);
3. trap.setTimeStamp(sysUpTime);
4. trap.setGeneric(code);
5. trapSender.sendTrap(host, port, trap, community);

1. SnmpTarget target = new SnmpTarget(host, port, community,
2. community, version);
3. SnmpSession session = new SnmpSession(target);
4. if(isSnmpV3)
5. {
6. session.setV3Params(user, authProtocol,
7. authPassword, privPassword);
8. }
9. SnmpPoller poller = new SnmpPoller(session);
10. poller.addListener(this);
11. poller.snmpGetNextPoll(oids, interval);

...
...

12. public void handleMsg(Object sender, Msg msg)
13. {
14. SnmpPdu pdu = (SnmpPdu) msg;
15. print(pdu);
16. }

I R E A S O N I N G S N M P L I B R A R Y

Line 1 to 8 create an SnmpSession and open a connection to the remote
agent. Line 9 creates an SnmpPoller class using the just created SnmpSession
object. Line 10 registers itself with the SnmpPoller object, so its handleMsg
method will get called if SnmpPoller finishes a request. Line 11 starts the poller
and tells poller to send GetNextRequest to the agent at specified intervals.
Check out snmppoll.java example for a complete implementation.

 Java Applet Example

Java code and HTML files are located at examples/snmp/applet. This example
shows how to retrieve agent information within a java applet. Because of
security restrictions of Java applet, the snmp agent and the web server have to
be running on the same machine.

I R E A S O N I N G S N M P L I B R A R Y

FAQ

Q. What is iReasoning SNMP API?
A. iReasoning SNMP API is the industry leading SNMP library, which provides a
high performance, cross platform Java API for building network management
applications. All SNMP versions (SNMPv1, SNMPv2c and SNMPv3) are fully
supported. It is written in Java, and designed from the ground up to support all
SNMP versions. There is no legacy code which only for a certain version of SNMP
protocol. All code base are highly optimized to maximize performance and
minimize overhead.
Q. What're the advantages of iReasoning SNMP API over its competitors?
A. Here are just some of the advantages over our competitors.

• Ease of use. You can take a look at the example code, such as
snmpgetnext.java or snmpwalk.java , to see how easy to implement
SNMPv1/v2c/v3 operations

• High performance. All code bases are highly optimized to maximize
performance and minimize overhead

• The first Java SNMP product to support both DES and strong 128-bit
AES encryption algorithms

• Support all SNMP versions (SNMPv1, SNMPv2c, SNMPv3)
• Conform to the EJB specification
• Robust and powerful SMIv1/SMIv2 MIB parser
• Support both UDP and TCP transport layers

Q. Do SNMP security vulnerabilities reported by CERT affect iReasoning
SNMP API?
A. The Finland Oulu University Secure Programming Group (OUSPG)
discovered numerous vulnerabilities in SNMP implementation from many
different vendors. Vulnerabilities in the decoding and subsequent processing of
SNMP messages by both managers and agents may result in unauthorized
privileged access, denial-of-service attacks, or cause unstable behavior.
iReasoning has investigated how these vulnerabilities may impact our SNMP
library and has found the following results:

• VU#107186 - Multiple vulnerabilities in SNMPv1 trap handling
SNMP trap messages are sent from agents to managers. A trap message
may indicate a warning or error condition or otherwise notify the manager
about the agent's state. SNMP managers must properly decode trap
messages and process the resulting data. In testing, OUSPG found multiple
vulnerabilities in the way many SNMP managers decode and process
SNMP trap messages.
iReasoning SNMP library successfully passed all the 24100 tests in OUSPG
test suite! We conclude this advisory does not affect iReasoning SNMP
library.

• VU#854306 - Multiple vulnerabilities in SNMPv1 request handling
SNMP request messages are sent from managers to agents. Request
messages might be issued to obtain information from an agent or to
instruct the agent to configure the host device. SNMP agents must

I R E A S O N I N G S N M P L I B R A R Y

properly decode request messages and process the resulting data. In testing,
OUSPG found multiple vulnerabilities in the way many SNMP agents
decode and process SNMP request messages.
This advisory is not applicable to iReasoning SNMP library because it does
not have SNMP agent functionality and does not accept SNMP request
messages.

Q. Does iReasoning SNMP API conform to the EJB specification?
A. If asynchronous mode is not used, no thread is created. And EJB specification
allows client side socket. So SNMP library conform to the EJB specification.
However, if asyncSend method in SnmpSession is used, it creates a new thread and
violates EJB specification. Asynchronous mode is not recommended to be used in
enterprise java beans. SNMP libraries from other vendors create thread no matter
which mode to use, they generally do not conform to EJB specification.

Q. How do I get started with this library?
A. First of all, a basic understanding of SNMP and Java is required. This user guide
provides nice introduction and usage examples about this library. Then you can
start with example code shipped with this product. Those example code clearly
illustrates how to write simple programs to do SNMP GetRequest,
GetNextRequest, Walk, etc. Example code is also integrated into javadoc help. So
you can read them from browsers. You also need an SNMP agent to test with
most of example code. If you do not have a agent for testing purpose, you can run
the snmpd.exe on windows to start an SNMP agent listening on port 161.

Q. Can I build an SNMP agent with iReasoning SNMP API?
A. No. You can use iReasoning Agent Builder to build SNMP agent. iReasoning
Agent Builder is a superset of SNMP API, it also provides tools for building agent.

Q. Which versions of SNMP are supported by iReasoning SNMP library?
A. iReasoning SNMP library support SNMPv1, SNMPv2c and SNMPv3.
However if you only purchase license for iReasoning SNMPv2 library, SNMPv3
support is not included.

Q. How's the SNMPv3 support?
A. iReasoning SNMP library fully supports SNMPv3, including the complete
VACM and USM security model (HMAC-MD5, HMAC-SHA1, HMAC-SHA2,
CBC-DES, CFB128-AES-128, CFB128-AES-192, CFB128-AES-256). It has
successfully passed a number of interoperability tests with other SNMPv3 vendors
and their SNMPv3 implementations. Now it is used as a de-facto reference
SNMPv3 implementation for other implementers.

Q. What is AES standard? And how does 128-bit AES encryption compare
to DES?
A. Excerpt from NIST (National Institute of Standards and Technology) website:

"The Advanced Encryption Standard (AES) is a new Federal Information Processing Standard
(FIPS) Publication that will specify a cryptographic algorithm for use by U.S. Government
organizations to protect sensitive (unclassified) information. NIST also anticipates that the AES

I R E A S O N I N G S N M P L I B R A R Y

will be widely used on a voluntary basis by organizations, institutions, and individuals outside of
the U.S. Government - and outside of the United States - in some cases.

The AES is being developed to replace DES, but NIST anticipates that Triple DES will
remain an approved algorithm (for U.S. Government use) for the foreseeable future. Single
DES is being phased out of use, and is currently permitted in legacy systems,
only.

Assuming that one could build a machine that could recover a DES key in a second (i.e., try 255
keys per second), then it would take that machine approximately 149 thousand-billion (149
trillion) years to crack a 128-bit AES key. To put that into perspective, the universe is believed to
be less than 20 billion years old."

See "The AES Cipher Algorithm in the SNMP User-based Security Model" for
more details on AES in SNMP.

Q. How's the performance of your trap receiver program?
A. In our test environment, the snmptrapd.java sample program can handle trap at
about 2700 traps/second (which can be higher if trap sender can reach higher
sending rate) on a Pentium III 700 machine with 512MB memory, it consistently
receives all the traps, while some popular trap receivers cannot catch all of the
traps.

Q. How do I run example code?
A.

1. Set up java classpath.
 For example:
 set classpath=lib\examples.jar;lib\ireasoningsnmp.jar
 (on windows, and assuming on a directory a level higher
than lib)
2. Start an SNMP agent. You can run snmpd.exe on windows.
3. Run
 java snmpget -?
 to see the usage help.
 Run
 java snmpget localhost sysUpTime
 to get the sysUpTime value from the agent

 Then you can play with other example code.

Q. Is MIB parser included in your API?
A. Yes. MibUtil.parseMib(String fileName) method can parse MIB file and return a
data structure representing MIB tree. A sample code, mibparser.java, is included to
illustrate the use of MIB parser.

Q. Does your SNMP API support IPv6?
A. Yes, if it's used with J2SDK/JRE 1.4. See "Networking IPv6 User Guide for
J2SDK/JRE 1.4" for more information. As of JVM 1.4.2, supported operating
systems are Solaris (ver 8 and up) and Linux (kernel 2.1.2 and up).

I R E A S O N I N G S N M P L I B R A R Y

Q. What operating systems does iReasoning SNMP library run on?
A. iReasoning SNMP library is written in Java, so it can run on any OS which has
JVM support.

Q. How can I make SNMP requests with object names instead of numeric
OIDs?
A. iReasoning SNMP library includes a MIB parser. You need to load MIB files
first by using MibUtil.loadMib method. To load MIB-II (RFC1213), you can call
MibUtil.loadMib2() method. After necessary MIB files are loaded, you then can use
MibUtil class' other method to do translation between object name and numeric
OID. Check out example code for more information.

Q. Can I use your SNMP API to develop SNMP agent?
A. No. Our SNMP agent builder is the right tool for agent development.

Q. I don't want to see log message, can I disable Logger?
A. Yes. Add one line of code like the following:
Logger.setLevel(Logger.NONE);

Q. Can I put config files in a directory other than "./config"?
A. Yes. For instance, you want config files in "d:\config", just add one more java
environment variable:
java -Dcom.ireasoning.configDir=d:\config ...

Q. Can I use SNMP API to access agent within a Java applet?
A. Yes. Because of security restrictions of Java applet, agent and web server have to
be running on the same machine. Check out this applet example.

Q. How can I change the community name after an SnmpSession is
created?
A. You can do this way:

 SnmpSession session = new SnmpSession(...);
 SnmpTarget target = (SnmpTarget) session.getTarget();
 target.setReadCommunity(...);

I R E A S O N I N G S N M P L I B R A R Y

RESOURCES AND
REFERENCE

v iReasoning Home Page

http://www.iReasoning.com/

v SNMP FAQ

http://www.faqs.org/faqs/snmp-faq/part1/

v SNMP RFCs
http://directory.google.com/Top/Computers/Internet/Protocols/SNMP
/RFCs/

v SNMP General Information

http://www.simpleweb.org/

v JAVA web site

http://java.com

I R E A S O N I N G S N M P L I B R A R Y

GLOSSARY OF TERMS
__

JAVA

Java is a programming language expressly designed for use in the
distributed environment of the Internet. It was designed to have the "look
and feel" of the C++ language, but it is simpler to use than C++ and
enforces an object-oriented programming model.

MIB

A management information base (MIB) is a formal description of a set of
network objects that can be managed using the Simple Network
Management Protocol (SNMP). The format of the MIB is defined as part
of the SNMP. (All other MIBs are extensions of this basic management
information base.) MIB-I refers to the initial MIB definition; MIB-II refers
to the current definition. SNMPv2 includes MIB-II and adds some new
objects.

OID

An Object Identifier (OID) is a text string that can be represented in either
decimal or English notation. Every OID represents a branch on a tree.
The tree begins with the root which is represented by a `.'. The root
contains several branches below it. Each of these branches in turn has sub-
branches beneath it. Branches at every level are labeled with a text name
and an unsigned decimal identifier.

PDU

Protocol Data Unit (PDU), basically a fancy word for packet. PDUs are
the building blocks of SNMP messages.

SNMP

Simple Network Management Protocol (SNMP) is the protocol governing
network management and the monitoring of network devices and their
functions. SNMP is described formally in the Internet Engineering Task
Force (IETF) Request for Comment (RFC) 1157 and in a number of other
related RFCs.

I R E A S O N I N G S N M P L I B R A R Y

TCP

TCP (Transmission Control Protocol) is a set of rules (protocol) used
along with the Internet Protocol (IP) to send data in the form of message
units between computers over the Internet. While IP takes care of handling
the actual delivery of the data, TCP takes care of keeping track of the
individual units of data (called packets) that a message is divided into for
efficient routing through the Internet. TCP is known as a connection-
oriented protocol, which means that a connection is established and
maintained until such time as the message or messages to be exchanged by
the application programs at each end have been exchanged.

Transport Layer

In the Open Systems Interconnection (OSI) communications model, the
Transport layer ensures the reliable arrival of messages and provides error
checking mechanisms and data flow controls. The Transport layer
provides services for both "connection-mode" transmissions and for
"connectionless-mode" transmissions. For connection-mode
transmissions, a transmission may be sent or arrive in the form of packets
that need to be reconstructed into a complete message at the other end.

TRAP

A trap is basically an asynchronous notification sent from an SNMP agent
to a network-management station to report a problem or a significant
event. Like everything else in SNMP, traps are sent using UDP (port 162)
and are therefore unreliable. This means that the sender cannot assume
that the trap actually arrives, nor can the destination assume that it's getting
all the traps being sent its way.

UDP

UDP (User Datagram Protocol) is a communications protocol that offers a
limited amount of service when messages are exchanged between
computers in a network that uses the Internet Protocol (IP). UDP is an
alternative to the Transmission Control Protocol (TCP) and, together with
IP, is sometimes referred to as UDP/IP. Like the Transmission Control
Protocol, UDP uses the Internet Protocol to actually get a data unit (called
a datagram) from one computer to another. Unlike TCP, however, UDP
does not provide the service of dividing a message into packets (datagrams)
and reassembling it at the other end.

UML

UML (Unified Modeling Language) is a standard notation for the modeling
of real-world objects as a first step in developing an object-oriented design
methodology.

